EMC Related Formulae

Log \leftrightarrow Linear Voltage

$\mathrm{dB} \mu \mathrm{V}$ to Volts	$V=10{ }^{((d B \mu V-120) / 20)}$
Volts to $\mathrm{dB} \mu \mathrm{V}$	$d B \mu V=20 \log (V)+120$
dBV to Volts	$V=10^{(d B V / 20)}$
Volts to dBV	$d B V=20 \log (V)$
dBV to $\mathrm{dB} \mu \mathrm{V}$	$d B \mu V=d B V+120$
$\mathrm{dB} \mu \mathrm{V}$ to dBV	$d B V=d B \mu V-120$
	Log \leftrightarrow Linear Power
dBm to Watts	$W=10{ }^{((d B m-30) / 10)}$
Watts to dBm	$d B m=10 \log (W)+30$
dBW to Watts	$W=10^{(d B W / 10)}$
Watts to dBW	$d B w=10 \log (W)$
dBW to dBm	$d B m=d B W+30$
dBm to dBW	$d B W=d B m-30$
	Log \leftrightarrow Linear Current
dBuA to uA	$\mu A=10^{(d B \mu A / 20)}$
$u A$ to dBuA	$d B \mu A=20 \log (\mu A)$
dBA to A	$A=10^{(d B A / 20)}$
A to dBA	$d B A=20 \log (A)$
dBuA to dBA	$d B A=d B \mu A-120$
dBA to dBuA	$d B \mu A=d B A+120$

Log \leftrightarrow Linear Impedance

$\mathrm{dB}($ ohms $)$ to ohms $Z=10^{(d B(o h m s) / 20)}$
ohms to dB (ohms) $\quad d B($ ohms $)=20 \log (Z)$

Term Conversion

dBm to dBuV $\quad d$	$d B \mu \nu=90+10 \log (Z)+d B m$
dBuV to dBm $\quad d$	$d B m=d B \mu V-90-10 \log (Z)$
dBuA to dBm $\quad d$	$d B m=d B \mu A+10 \log (Z)-90$
dBm to dBuA $\quad d$	$d B \mu A=d B m-10 \log (Z)+90$
dBuA to dBuV d	$d B \mu V=d B \mu A+20 \log (Z)$
dBuV to dBuA $\quad d$	$d B \mu A=d B \mu V-20 \log (Z)$
Volts to Amps \& Watts	ats $\quad A=\frac{V}{Z} \quad W=\frac{V^{2}}{Z}$
Amps to Volts \& Watts	tts $\quad V=A * Z \quad W=A^{2} * Z$
Watts to Volts \& Amps	ps $\quad V=\sqrt{W * Z} \quad A=\sqrt{\frac{W}{Z}}$

RF related, Field Strength \& Power Density

$\mathrm{dBuV} / \mathrm{m}$ to V / m	$V / m=10^{(((d B \mu V / m)-120) / 20)}$
V / m to $\mathrm{dBuV} / \mathrm{m}$	$d B \mu V / m=20 \log (V / m)+120$
$\mathrm{dBuv} / \mathrm{m}$ to $\mathrm{dBmW} / \mathrm{m} 2$	$d B m / m^{2}=d B \mu V / m-115.8$
$\mathrm{dBmW} / \mathrm{m} 2$ to $\mathrm{dBuV} / \mathrm{m}$	$d B \mu V / m=d B m / m^{2}+115.8$
$\mathrm{dBuV} / \mathrm{m}$ to $\mathrm{dBuA} / \mathrm{m}$	$d B \mu A / m=d B \mu V / m-51.5$
$\mathrm{dBuA} / \mathrm{m}$ to $\mathrm{dBuV} / \mathrm{m}$	$d B \mu V / m=d B \mu A / m+51.5$
$\mathrm{dBuA} / \mathrm{m}$ to dBp T	$d B p T=d B \mu A / m+2$
dBp T to $\mathrm{dBuA} / \mathrm{m}$	$d B \mu A / m=d B p T-2$
$\mathrm{W} / \mathrm{m} 2$ to V / m	$V / m=\sqrt{\left(W / m^{2}\right) * 377}$
V / m to $\mathrm{W} / \mathrm{m} 2$	$W / m^{2}=\frac{(V / m)^{2}}{377}$
wound coil Flux Density	$\mu T=\frac{4 \pi(\text { turns })(\text { amps })}{20(\text { radius }, m)}$
uT to A/m	$A / m=\frac{\mu T}{1.25}$
A/m to uT	$\mu T=1.25 *(A / m)$

Antenna (Far Field)

Gain, dBi to numeric

$$
\text { Gain }_{\text {numeric }}=10^{(d B i / 10)}
$$

Gain, numeric to dBi

$$
d B i=10 \log \left(\text { Gain }_{\text {numeric }}\right)
$$

Gain, dBi to Antenna Factor

$$
A F=20 \log (M H z)-d B i-29.79
$$

Antenna Factor to gain in dBi

$$
d B i=20 \log (M H z)-A F-29.79
$$

Field Strength given Watts, Numeric Gain, Distance in meters

$$
V / m=\frac{\sqrt{30 * \text { watts }^{*} \text { Gain }_{\text {numeric }}}}{\text { Meters }}
$$

Field Strength given Watts, dBi gain, Distance in meters

$$
V / m=\frac{\sqrt{30 * \text { watts } * 10^{(d B i / 10)}}}{\text { Meters }}
$$

Transmit Power needed, given desired V/m, Antenna numeric gain, Distance in meters.

$$
\text { watts }=\frac{(V / m * \text { meters })^{2}}{30 * \text { Gain }_{\text {numeric }}}
$$

Transmit Power needed, given V/m, Antenna dBi gain, Distance in meters

$$
\text { watts }=\frac{\left(\mathrm{V} / \mathrm{m}^{*} \text { meters }\right)^{2}}{30 * 10^{(d \mathrm{Bi} / 10)}}
$$

Amplitude Modulation

Peak power, given CW power and modulation \%.(sine wave AM)

$$
W_{\text {peak }}=W_{C W}(1+(\operatorname{Mod} \% * 0.01))^{2}
$$

Average power, given CW power level and modulation \% (sine wave AM)

$$
W_{a v g}=\frac{W_{c w} *\left(2+(M o d \% * 0.01)^{2}\right)}{2}
$$

Average power, given peak power and modulation \%

$$
W_{a v g}=\frac{W_{\text {peak }} *\left(2+(\operatorname{Mod} \% * 0.01)^{2}\right)}{2 *(1+(\operatorname{Mod} \% * 0.01))^{2}}
$$

Current Probe

dB (ohm) to Zt (transfer impedance)

$$
Z_{t}=10^{(d B(o h m) / 20)}
$$

Zt to dB (ohm)

$$
d B(\text { ohm })=20 \log \left(Z_{t}\right)
$$

Conductance (Gt) in $\mathrm{dB}(\mathrm{s})$ to transfer impedance, (Zt) in dB(ohms)

$$
Z_{t}=-G_{t}
$$

Transfer Impedance in $\mathrm{Zt}(\mathrm{dB}($ ohms $)$), to Conductance in Gt (dB(s))

$$
G_{t}=-Z_{t}
$$

Power needed for BCI Probe (50Ω), given voltage level into 50Ω load (V) and Probe Insertion Loss I_{L}.

$$
\text { watts }=10^{\left(\left(I_{L}+10 \log \left(V^{2} / 50\right)\right) / 10\right)}
$$

Watts needed for 150 Ohm EM Clamp

$$
\text { watts }=10^{\left(\left(I_{L}+10 \log \left(V^{2} / 150\right)\right) / 10\right)}
$$

Conducted current level using current measuring probe given probe factor in dB (ohm) and probe terminal voltage in dBuv

$$
d B \mu A=d B \mu V-d B(o h m)
$$

Conducted current level, given probe factor in Zt (ohms) and terminal voltage in dBuv

$$
d B \mu A=d B \mu V-20 \log \left(Z_{t}\right)
$$

dB calculations
Compute db delta (volts) $\quad d B=20 \log \left(\frac{V_{1}}{V_{2}}\right)$

Compute dB delta (amps) $\quad d B=20 \log \left(\frac{A_{1}}{A_{2}}\right)$

Compute dB delta (watts) $\quad d B=10 \log \left(\frac{W_{1}}{W_{2}}\right)$
compute new voltage w / db delta

$$
V_{\text {new }}=10\left(\frac{\left(d B \Delta+20 \log \left(V_{\text {given }}\right)\right.}{20}\right)
$$

compute new wattage w / db delta

$$
W_{\text {new }}=10\left(\frac{\left(d B \Delta+10 \log \left(W_{\text {given }}\right)\right.}{10}\right)
$$

VSWR/reflection coefficient/return loss

VSWR given Fwd/Rev Power

$$
V S W R=\frac{1+\sqrt{\frac{P_{r e v}}{P_{f w d}}}}{1-\sqrt{\frac{P_{r e v}}{P_{f w d}}}}
$$

VSWR given reflection coefficient

$$
V S W R=\frac{1+\rho}{1-\rho}
$$

Reflection coefficient, ρ, given Z1/Z2 ohms

$$
\rho=\left|\frac{Z_{1}-Z_{2}}{Z_{1}+Z_{2}}\right|
$$

Reflection coefficient, ρ, given fwd/rev power

$$
\rho=\sqrt{\frac{P_{r e v}}{P_{f w d}}}
$$

Return Loss, given fwd/rev power

$$
R L(d B)=10 \log \left(\frac{P_{f w d}}{P_{r e v}}\right)
$$

Return Loss, given VSWR

$$
R L(d B)=-20 \log \left(\frac{V S W R-1}{V S W R+1}\right)
$$

Return Loss, given reflection coefficient

$$
R L(d B)=-20 \log (\rho)
$$

Mismatch loss, given fwd/rev power

$$
M L(d B)=10 \log \left(\frac{P_{f w d}}{P_{f w d-} P_{r e v}}\right)
$$

Mismatch loss, given reflection coefficient

$$
M L(d B)=-10 \log \left(1-\rho^{2}\right)
$$

Misc
Linear interpolation with log of freq

$$
\text { Value }=\frac{\log \left(F_{X} / F_{L}\right)}{\log \left(F_{U} / F_{L}\right)} *\left(X_{U}-X_{L}\right)+X_{L}
$$

where $\quad F_{L}=$ lower frequency
$F_{U}=$ Upper frequency
$X_{L}=$ Value at lower frequency
$X_{U}=$ Value at upper frequency
$F_{X}=$ Frequency of desired value

TEM Cell Power Needed

$$
\text { Watts }=\frac{(V * H e i g h t * 0.5)^{2}}{Z}
$$

where $\quad V=$ field strength in V / m $Z=$ TEM cell impedance in ohms

